人才团队

国家杰青
当前位置: 首页 > 人才团队 > 国家杰青 > 正文

Chun-Peng SONG


Chun-Peng SONG (宋纯鹏)

Professor and Director

State Key Laboratory of Crop Stress Adaptation and Improvement,

School of Life Sciences/College of Agriculture, Henan University

Jinming Blvd, Kaifeng 475004, China

Tel: 037123798708

Email: songcp@henu.edu.cn

Educational Background

1979 to 1983: Henan Normal University, Bachelor, Biology

1987 to 1990: Peking University, Master, Plant physiology

1995 to 1998: China Agricultural University, Ph.D., Plant physiology

1994 to 1995: Lancaster University, Visiting Scholar, Plant physiology

1999 to 2003: University of Arizona, Post-Doctor, Plant physiology & molecular biology

Professional Experience

2022 to present: Henan University, Director, State Key Laboratory of Crop Stress Adaptation and Improvement

2017 to 2022: Henan University, President

2006 to 2017: Henan University, Vice-President

2002 to 2006: Henan University, Dean, College of Life Science

1997 to 2002: Henan University, Director, Department of Biology

1994 to 1997: Henan University, Deputy Director, Department of Biology

Major Academic Positions

Professor; Ph.D. Supervisor; Recipient of National Outstanding Youth Foundation; Central Plains Scholar of Henan Province.

Vice-Chairman of the Chinese Society of Plant Physiology; Deputy Director of the Environmental and Nutritional Physiology Committee; Deputy Director of the Plant Molecular Biology Committee; Member of the Botanical Society of China; Member of the Plant Organ Genetics Branch; Member of the Chinese Society for Cell Biology.

Editor-in-Chief of New Crops and Editor of New Phytologist, Journal of Integrative Plant Biology, and Science Bulletin.

Research Interests

Our team is committed to unraveling core drought stress signaling mechanisms in agricultural crops. With a long-term vision to develop climate-resilient agriculture, we aim to pioneer smart crop systems through enhanced water-use efficiency (WUE) engineering.

Methodological Framework:

We employ an integrated research strategy combining molecular genetic profiling, subcellular dynamic analysis, and systems biology modeling. This multidisciplinary approach enables comprehensive characterization of drought adaptation processes while accelerating the development of stress-resistant cultivars.

Strategic Objectives:

1. Decoding drought-responsive signaling networks during stomatal development and movement in grass

2. Engineering WUE optimization pathways

3. Exploring molecular mechanisms of root architecture morphogenesis in response to environmental stresses.

4. Developing predictive models for smart crop design by reconstruction for the diversity of wheat D subgenome.

Current Projects:

1. Genetic mechanism and efficient mining of wheat drought resistance trait based on Aegilops tauschii-derived genomic analysis, NSFC, No. 32230079, 2023-2027.

2. Construction of mechanical characteristics of guard cell walls and the role in water and CO₂ utilization in maize, NSFC, No. U21A20206, 2022-2025.

3. Molecular mechanisms of stress-induced maize xylem development and the related root original signal transduction, NSFC, No. U1604233, 2017-2021.

4. Molecular mechanisms of maize guard cell development and the involvement in stress adaptations, NSFC, No. 31430061, 2015-2019.

Selected Publications

1. Wang K, Guo G, Bai S, Ma J, Zhang Z, Xing Z, Wang W, Li H, Liang H, Li Z, Si X, Wang J, Liu Q, Xu W, Yang C, Song RF, Li J, He T, Li J, Zeng X, Liang J, Zhang F, Qiu X, Li Y, Bu T, Liu WC, Zhao Y, Huang J*, Zhou Y*, Song CP*. Horizontally acquired CSP genes contribute to wheat adaptation and improvement. Nat Plants. 2025. DOI: 10.1038/s41477-025-01952-8.

2. Zhang Z, Qiu X, Guang G, Zhu X, Shi J, Zhang N, Ding S, Tang N, Qu Y, Zun Z, Li H, Ma F, Xie S, Lv Q, Fu L, Hu G, Cao Y, Ge H, Li H, Huang J, Xu W, Yang W*, Zhou Y*, Song CP*. An automated root phenotype platform enables non-destructive high-throughput root system architecture dissection in wheat. Plant Physiol. 2025, DOI: 10.1093/plphys/kiaf154.

3. Wu C, Wang X, Li Y, Zhen W, Wang C, Wang X, Xie Z, Xu X, Guo S, Botella JR, Zheng B, Wang W, Song CP*, Hu Z*. Sequestration of DBR1 to stress granules promotes lariat intronic RNAs accumulation for heat-stress tolerance. Nat Commun. 2024; 15: 7696.

4. Li H, Zhu L, Fan R, Li Z, Liu Y, Shaheen A, Nie F, Li C, Liu X, Li Y, Liu W, Yang Y, Guo T, Zhu Y, Bu M, Li CL, Liang H, Bai S, Ma F, Guo G, Zhang Z, Huang J, Zhou Y*, Song CP*.  A platform for whole-genome speed introgression from Aegilops tauschii to wheat for breeding future crops. Nat Protoc. 2024; 19: 281-312.

5. Huang S, Guo S, Dai L, Mi L, Li W, Xing J, Hu Z, Wu W, Duan Z, Li B, Sun T, Wang B, Zhang Y, Xiao T, Xue Y, Tang N, Li H, Zhang C, Song CP*. Tubulin participates in establishing protoxylem vessel reinforcement patterns and hydraulic conductivity in maize. Plant Physiol. 2024; 196: 931-947.

6. Zhang Z, Qu Y, Ma F, Lv Q, Zhu X, Guo G, Li M, Yang W, Que B, Zhang Y, He T, Qiu X, Deng H, Song J, Liu Q, Wang B, Ke Y, Bai S, Li J, Lv L, Li R, Wang K, Li H, Feng H, Huang J, Yang W, Zhou Y*, Song CP*. Integrating high-throughput phenotyping and genome-wide association studies for enhanced drought resistance and yield prediction in wheat. New Phytol. 2024; 243:1758-1775.

7. Guo AY, Wu WQ, Bai D, Li Y, Xie J, Guo S, Song CP*. Recruitment of HAB1 and SnRK2.2 by C2-domain protein CAR1 in plasma membrane ABA signaling. Plant J. 2024; 119: 237-251.

8. Guo AY, Wu WQ*, Liu WC, Zheng Y, Bai D, Li Y, Xie J, Guo S, Song CP*. C2-domain abscisic acid-related proteins regulate the dynamics of a plasma membrane H+-ATPase in response to alkali stress. Plant Physiol. 2024; 196: 2784-2794.

9. Wang P, Liu WC, Han C, Wang S, Bai MY*, Song CP*. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. J Integr Plant Biol. 2024; 66: 330-367.

10. Zhou Y, Zhang T, Wang X, Wu W, Xing J, Li Z, Qiao X, Zhang C, Wang X, Wang G, Li W, Bai S, Li Z, Suo Y, Wang J, Niu Y, Zhang J, Lan C, Hu Z, Li B, Zhang X, Wang W, Galbraith DW, Chen Y, Guo S*, Song CP*. A maize epimerase modulates cell wall synthesis and glycosylation during stomatal morphogenesis. Nat Commun. 2023; 14: 4384.

11. Xiang F, Liu WC, Liu X, Song Y, Zhang Y, Zhu X, Wang P, Guo S, Song CP*. Direct balancing of lipid mobilization and reactive oxygen species production by the epoxidation of fatty acid catalyzed by a cytochrome P450 protein during seed germination. New Phytol. 2023; 237: 2104-2117.

12. Ma J, Wang S, Zhu X, Sun G, Chang G, Li L, Hu X, Zhang S, Zhou Y, Song CP*, Huang J*. Major episodes of horizontal gene transfer drove the evolution of land plants. Mol Plant. 2022; 15: 857-871.

13. Sun G, Xia M, Li J, Ma W, Li Q, Xie J, Bai S, Fang S, Sun T, Feng X, Guo G, Niu Y, Hou J, Ye W, Ma J, Guo S, Wang H, Long Y, Zhang X, Zhang J, Zhou H, Li B, Liu J, Zou C, Wang H, Huang J, Galbraith DW*, Song CP*. The maize single-nucleus transcriptome comprehensively describes signaling networks governing movement and development of grass stomata. Plant Cell. 2022; 34: 1890-1911.

14. Li H, Nie F, Zhu L, Mu M, Fan R, Li J, Shaheen A, Liu Y, Li C, Liu W, Liang H, Zhao X, Bai S, Guo G, Li Z, Hu Y, Jiao Y, Adams J, Distelfeld A, Sun G, Li S, Zhou Y*, Song CP*. New insights into the dispersion history and adaptive evolution of taxon Aegilops tauschii in China. J Genet Genomics. 2022; 49: 185-194.

15. Zhou Y, Bai S, Li H, Sun G, Zhang D, Ma F, Zhao X, Nie F, Li J, Chen L, Lv L, Zhu L, Fan R, Ge Y, Shaheen A, Guo G, Zhang Z, Ma J, Liang H, Qiu X, Hu J, Sun T, Hou J, Xu H, Xue S, Jiang W, Huang J, Li S, Zou C*, Song CP*. Introgressing the Aegilops tauschii genome into wheat as a basis for cereal improvement. Nat Plants. 2021; 7: 774-786.

16. Chen Q, Bai L, Wang W, Shi H, Botella JR, Zhan Q, Liu K, Yang HQ, Song CP*. COP1 Promotes ABA-Induced Stomatal Closure by Modulating the Abundance of ABI/HAB and AHG3 Phosphatases. New Phytol. 2021; 229: 2035-2049.

17. Liu H, Guo S, Lu M, Zhang Y, Li J, Wang W, Wang P, Zhang J, Hu Z, Li L, Si L, Zhang J, Qi Q, Jiang X, Botella JR, Wang H, Song CP*. Biosynthesis of DHGA12 and its roles in Arabidopsis seedling establishment. Nat Commun. 2019; 10: 1768.

18. Wang H, Guo S, Qiao X, Guo J, Li Z, Zhou Y, Bai S, Gao Z, Wang D, Wang P, Galbraith DW, Song CP*. BZU2/ZmMUTE controls symmetrical division of guard mother cell and specifies neighbor cell fate in maize. PLoS Genet. 2019; 15: e1008377.

19. Dong H, Bai L, Zhang Y, Zhang G, Mao Y, Min L, Xiang F, Qian D, Zhu X, Song CP*. Modulation of guard cell turgor and drought tolerance by a peroxisomal acetate-malate shunt. Mol Plant. 2018; 11: 1278-1291.

20. Long L, Guo DD, Gao W, Yang WW, Hou LP, Ma XN, Miao YC, Botella JR*, Song CP*. Optimization of CRISPR/Cas9 genome editing in cotton by improved sgRNA expression. Plant Methods. 2018; 14:85.

21. Li K, Yang F, Zhang G, Song S, Li Y, Ren D, Miao Y*, Song CP*. AIK1, a mitogen-activated protein kinase, modulates abscisic acid responses through the MKK5-MPK6 kinase cascade. Plant Physiol. 2017; 173: 1391-1408.

22. Bai L, Ma X, Zhang G, Song S, Zhou Y, Gao L, Miao Y, Song CP*. A receptor-like kinase mediates ammonium homeostasis and is important for the polar growth of root hairs in Arabidopsis. Plant Cell. 2014, 26: 1497-1511.

23. Song Y, Miao Y, Song CP*. Behind the scenes: the roles of reactive oxygen species in guard cells. New Phytol. 2014; 201: 1121-1140.

24. Wang P, Du Y, Zhao X, Miao Y, Song CP*. The MPK6-ERF6-ROS-responsive cis-acting element 7/GCC box complex modulates oxidative gene transcription and the oxidative response in Arabidopsis. Plant Physiol. 2013; 161: 1392-1408.

25. Wang P, Du Y, Li Y, Ren D, Song CP*. Hydrogen peroxide-mediated activation of MAP kinase 6 modulates nitric oxide biosynthesis and signal transduction in Arabidopsis. Plant Cell. 2010; 22: 2981-2998.

26. Bai L, Zhang G, Zhou Y, Zhang Z, Wang W, Du Y, Wu Z, Song CP*. Plasma membrane-associated proline-rich extensin-like receptor kinase 4, a novel regulator of Ca signalling, is required for abscisic acid responses in Arabidopsis thaliana. Plant J. 2009; 60: 314-327.

27. Wang P, Song CP*. Guard-cell signalling for hydrogen peroxide and abscisic acid. New Phytol. 2008; 178: 703-718.

28. Miao Y, Lv D, Wang P, Wang XC, Chen J, Miao C, Song CP*. An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell. 2006; 18: 2749-2766.

29. Song CP, Galbraith DW*. AtSAP18, an orthologue of human SAP18, is involved in the regulation of salt stress and mediates transcriptional repression in Arabidopsis. Plant Mol Biol. 2006; 60: 241-257.

30. Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK*. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell. 2005; 17: 2384-2396.

31. Song CP, Guo Y, Qiu Q, Lambert G, Galbraith DW, Jagendorf A, Zhu JK*. A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2004; 101: 10211-10216.

32. Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP*. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol. 2001; 126: 1438-1448.


Copyright@2017 作物逆境适应与改良国家重点实验室  All Rights reserved

地址:中国-河南-开封 联系电话:0371 — 23798708