News
Genome-wide identification of CBL family and expression analysis of CBLs in response to potassium deficiency in cotton
作者:Lu TT,Zhang GF , Sun LR, Wang J, Hao FS.
刊名:Peer J;
年卷页码:DOI 10.7717/peerj.3653
网联:https://peerj.com/articles/3653.html
Abstract
Calcineurin B-like (CBL) proteins, as calcium sensors, play pivotal roles in plant responses to diverse abiotic stresses and in growth and development through interaction with CBL-interacting protein kinases (CIPKs). However, knowledge about functions and evolution of CBLs in Gossypium plants is scarce. Here, we conducted a genome-wide survey and identified 13, 13 and 22 CBL genes in the progenitor diploid Gossypium arboreum and Gossypium raimondii, and the cultivated allotetraploid Gossypium hirsutum, respectively. Analysis of physical properties, chromosomal locations, conserved domains and phylogeny indicated rather conserved nature of CBLs among the three Gossypium species. Moreover, these CBLs have closer genetic evolutionary relationship with the CBLs from cocoa than with those from other plants. Most CBL genes underwent evolution under purifying selection in the three Gossypium plants. Additionally, nearly all G. hirsutum CBL (GhCBL) genes were expressed in the root, stem, leaf, flower and fiber. Many GhCBLs were preferentially expressed in the flower while several GhCBLs were mainly expressed in roots. Expression patterns of GhCBL genes in response to potassium deficiency were also studied. The expression of most GhCBLs were moderately induced in roots after treatments with low-potassium stress. Yeast two-hybrid experiments indicated that GhCBL1-2, GhCBL1-3, GhCBL4-4, GhCBL8, GhCBL9 and GhCBL10-3 interacted with GhCIPK23, respectively. Our results provided a comprehensive view of the CBLs and valuable information for researchers to further investigate the roles and functional mechanisms of the CBLs in Gossypium.
Copyright@2017 作物逆境适应与改良国家重点实验室 All Rights reserved
地址:中国-河南-开封 联系电话:0371 — 23798708